Search results for " DNA-Binding Proteins"

showing 10 items of 12 documents

Peroxisome proliferator-activated receptor alpha deficiency impairs regulatory T cell functions: Possible application in the inhibition of melanoma t…

2016

International audience; Regulatory T (Treg) cells are important to induce and maintain immunological self-tolerance. Although the progress accomplished in understanding the functional mechanism of Treg cells, intracellular molecules that control the mechanisms of their suppressive capacity are still on investigation. The present study showed that peroxisome proliferator-activated receptor-alpha deficiency impaired the suppressive activity of Treg cells on CD4(+)CD25(-) and CD8(+) T cell proliferation. In Treg cells, PPARα gene deletion also induced a decrease of migratory abilities, and downregulated the expression of chemokine receptors (CCR-4, CCR-8 and CXCR-4) and p27(KIP1) mRNA. Treg ce…

0301 basic medicineMaleAdoptive cell transferMESH: Tumor BurdenB16 melanoma tumorMelanoma ExperimentalMESH: T-Lymphocyte SubsetsCD4(+)CD25(+) regulatory T cellsBiochemistryMESH: Mice KnockoutImmunotherapy AdoptiveT-Lymphocytes RegulatoryPPARαMESH : T-Lymphocytes RegulatoryCell MovementT-Lymphocyte SubsetsMESH: Reverse Transcriptase Polymerase Chain ReactionMESH : Cell ProliferationMESH : Cell MovementMESH: AnimalsIL-2 receptorMESH: PPAR alphaMESH: Cell MovementCells CulturedMice KnockoutMESH : Melanoma ExperimentalbiologyMESH : Tumor BurdenReverse Transcriptase Polymerase Chain ReactionMESH : Reverse Transcriptase Polymerase Chain ReactionFOXP3hemic and immune systemsGeneral MedicineMESH: Gene Expression Regulation Neoplastic3. Good healthTumor BurdenMESH: Melanoma ExperimentalDNA-Binding ProteinsGene Expression Regulation Neoplasticmedicine.anatomical_structureMESH: Immunotherapy AdoptiveReceptors ChemokineMESH : DNA-Binding ProteinsMESH: Cells Culturedmedicine.medical_specialtyMESH : Receptors ChemokineMESH: Cell Line TumorRegulatory T cellMESH : Gene Expression Regulation NeoplasticT cellMESH : MaleMESH : PPAR alphachemical and pharmacologic phenomenaMESH : Mice Inbred C57BLMESH : Clonal Anergy03 medical and health sciencesMESH: Mice Inbred C57BLInternal medicineMESH: Cell ProliferationCell Line TumorMESH : Cells CulturedmedicineAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyPPAR alpha[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyCell ProliferationClonal AnergyPerforinMESH : Cell Line TumorMESH: T-Lymphocytes RegulatoryMolecular biologyMESH: MaleMESH : T-Lymphocyte SubsetsGranzyme BMice Inbred C57BL030104 developmental biologyEndocrinologyPerforinMESH: Clonal Anergybiology.proteinMESH : Mice KnockoutMESH : AnimalsMESH: Receptors ChemokineCD8MESH: DNA-Binding ProteinsMESH : Immunotherapy Adoptive
researchProduct

SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in fem…

2021

Contains fulltext : 231702.pdf (Publisher’s version ) (Closed access) Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals…

0301 basic medicineSHARPMaleobesitygenotype-phenotype correlationsAutism Spectrum DisorderPROTEINChromosome DisordersHaploinsufficiencyRNA-Binding ProteinPHENOTYPE CORRELATIONS1p36; distal 1p36 deletion syndrome; DNA methylome analysis; episignature; genotype-phenotype correlations; neurodevelopmental disorder; obesity; proximal 1p36 deletion syndrome; SPEN; X chromosome; Adolescent; Autism Spectrum Disorder; Child; Child Preschool; Chromosome Deletion; Chromosome Disorders; Chromosomes Human Pair 1; Chromosomes Human X; DNA Methylation; DNA-Binding Proteins; Epigenesis Genetic; Female; Haploinsufficiency; Humans; Intellectual Disability; Male; Neurodevelopmental Disorders; Phenotype; RNA-Binding Proteins; Young AdultEpigenesis GeneticX chromosome0302 clinical medicineNeurodevelopmental disorderNeurodevelopmental DisorderIntellectual disabilityMOLECULAR CHARACTERIZATIONdistal 1p36 deletion syndromeChildGenetics (clinical)X chromosomeGeneticsXDNA methylome analysiRNA-Binding ProteinsSPLIT-ENDSHypotoniaDNA-Binding ProteinsPhenotypeAutism spectrum disorderChromosomes Human Pair 1Child PreschoolDNA methylome analysisMONOSOMY 1P36Pair 1SPENFemalemedicine.symptomChromosome DeletionHaploinsufficiencyRare cancers Radboud Institute for Health Sciences [Radboudumc 9]HumanAdolescentDNA-Binding ProteinBiologygenotype-phenotype correlationChromosomes03 medical and health sciencesYoung AdultGeneticSDG 3 - Good Health and Well-beingReportIntellectual DisabilityREVEALSGeneticsmedicineHumansEpigeneticsPreschoolChromosomes Human XNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]1p361p36 deletion syndromeIDENTIFICATIONMUTATIONSproximal 1p36 deletion syndromeDNA Methylationmedicine.diseaseneurodevelopmental disorderGENEepisignature030104 developmental biologyChromosome DisorderNeurodevelopmental Disorders030217 neurology & neurosurgeryEpigenesis
researchProduct

Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression

2012

International audience; Although Th17 cells are known to promote tissue inflammation and autoimmunity, their role during cancer progression remains elusive. Here, we showed that in vitro Th17 cells generated with the cytokines IL-6 and TGF-β expressed CD39 and CD73 ectonucleotidases, leading to adenosine release and the subsequent suppression of CD4(+) and CD8(+) T cell effector functions. The IL-6-mediated activation of the transcription factor Stat3 and the TGF-β-driven downregulation of Gfi-1 transcription factor were both essential for the expression of ectonucleotidases during Th17 cell differentiation. Stat3 supported whereas Gfi-1 repressed CD39 and CD73 expression by binding to thei…

Adoptive cell transferMESH : Transcription FactorsCellular differentiationMESH: Th17 CellsT-LymphocytesCellMESH : Promoter Regions GeneticMESH : RNA Small InterferingMESH: Mice KnockoutMice0302 clinical medicineTransforming Growth Factor betaMESH: RNA Small InterferingMESH : STAT3 Transcription FactorImmunology and Allergy[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyEctonucleotidaseMESH: AnimalsRNA Small InterferingSTAT3MESH: Lymphocytes Tumor-InfiltratingPromoter Regions GeneticMESH: Antigens CD5'-NucleotidaseRegulation of gene expressionMice Knockout0303 health sciencesMESH : Gene Expression RegulationApyraseMESH: STAT3 Transcription FactorMESH: Transcription FactorsMESH: Gene Expression RegulationMESH : Mice TransgenicCell biologyMESH : Lymphocytes Tumor-InfiltratingDNA-Binding ProteinsMESH : ApyraseInfectious Diseasesmedicine.anatomical_structure[SDV.IMM]Life Sciences [q-bio]/ImmunologyMESH : DNA-Binding ProteinsMESH: ApyraseSTAT3 Transcription Factor[SDV.IMM] Life Sciences [q-bio]/ImmunologyMESH : Interleukin-6MESH: Mice TransgenicT cellImmunologyMice TransgenicMESH : Mice Inbred C57BLBiology03 medical and health sciencesLymphocytes Tumor-InfiltratingMESH: Mice Inbred C57BLAntigens CDMESH: Promoter Regions GeneticMESH : 5'-NucleotidaseMESH : MicemedicineMESH : Antigens CDMESH : Th17 CellsAnimalsTranscription factorMESH: MiceMESH: Transforming Growth Factor beta030304 developmental biologyMESH : T-LymphocytesBinding SitesInterleukin-6MESH: Interleukin-6Mice Inbred C57BLMESH: T-LymphocytesMESH : Transforming Growth Factor betaMESH: Binding SitesGene Expression Regulationbiology.proteinMESH : Mice KnockoutTh17 CellsMESH : AnimalsMESH: 5'-NucleotidaseMESH: DNA-Binding ProteinsMESH : Binding Sites030215 immunologyTranscription FactorsImmunity
researchProduct

The transcription factor IFN regulatory factor–4 controls experimental colitis in mice via T cell–derived IL-6

2008

The proinflammatory cytokine IL-6 seems to have an important role in the intestinal inflammation that characterizes inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis. However, little is known about the molecular mechanisms regulating IL-6 production in IBD. Here, we assessed the role of the transcriptional regulator IFN regulatory factor-4 (IRF4) in this process. Patients with either Crohn disease or ulcerative colitis exhibited increased IRF4 expression in lamina propria CD3+ T cells as compared with control patients. Consistent with IRF4 having a regulatory function in T cells, in a mouse model of IBD whereby colitis is induced in RAG-deficient mice by transp…

AdultCD4-Positive T-LymphocytesMaleAdoptive cell transferRecombinant Fusion ProteinsT-LymphocytesCD3T cellAdoptive Transfer; Adult; Animals; Apoptosis; CD4-Positive T-Lymphocytes; Colitis; Cytokines; DNA-Binding Proteins; Female; Gene Expression Regulation; Humans; Inflammatory Bowel Diseases; Interferon Regulatory Factors; Interleukin-6; Intestinal Mucosa; Male; Mice; Mice Inbred C57BL; Mice Knockout; Middle Aged; Oxazolone; Receptors Interleukin-6; Recombinant Fusion Proteins; T-Lymphocytes; Trinitrobenzenesulfonic AcidApoptosisProinflammatory cytokineMiceIntestinal mucosamedicineAnimalsHumansIntestinal MucosaColitisInterleukin 6Mice KnockoutbiologyInterleukin-6OxazoloneGeneral MedicineMiddle AgedColitisInflammatory Bowel Diseasesmedicine.diseaseAdoptive TransferReceptors Interleukin-6Ulcerative colitisDNA-Binding ProteinsMice Inbred C57BLmedicine.anatomical_structureGene Expression RegulationTrinitrobenzenesulfonic AcidInterferon Regulatory FactorsImmunologybiology.proteinCytokinesFemaleResearch ArticleJournal of Clinical Investigation
researchProduct

Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice

2002

The serine-threonine kinase Akt seems to be central in mediating stimuli from different classes of receptors. In fact, both IGF-1 and IL6-like cytokines induce hypertrophic and antiapoptotic signals in cardiomyocytes through PI3K-dependent Akt activation. More recently, it was shown that Akt is involved also in the hypertrophic and antiapoptotic effects of β-adrenergic stimulation. Thus, to determine the effects of Akt on cardiac function in vivo, we generated a model of cardiac-specific Akt overexpression in mice. Transgenic mice were generated by using the E40K, constitutively active mutant of Akt linked to the rat α-myosin heavy chain promoter. The effects of cardiac-selective Akt overex…

Gene ExpressionTransgenicGlycogen Synthase Kinase 3MiceGSK-3Receptorsgenetics/physiologycytology/metabolismMultidisciplinaryBiological SciencesProtein-Serine-Threonine KinasesDNA-Binding Proteinsenzymology/genetics/pathologyAdrenergicPhosphorylationSignal transductionMitogen-Activated Protein KinasesSignal Transductionmedicine.medical_specialtyCardiomyopathyAnimals; Calcium-Calmodulin-Dependent Protein Kinases; metabolism; Cardiomyopathy; Hypertrophic; enzymology/genetics/pathology; Cell Size; physiology; DNA-Binding Proteins; GATA4 Transcription Factor; Gene Expression; Glycogen Synthase Kinase 3; Mice; Transgenic; Mitogen-Activated Protein Kinases; Myocardial Contraction; Myocardium; cytology/metabolism; Point Mutation; Protein-Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins; genetics/physiology; Rats; Receptors; Adrenergic; beta; Signal Transduction; Transcription FactorsMice TransgenicBiologyProtein Serine-Threonine KinasesContractilityIn vivoInternal medicineProto-Oncogene ProteinsReceptors Adrenergic betamedicineAnimalsPoint MutationGlycogen synthaseProtein kinase BPI3K/AKT/mTOR pathwayCell SizeMyocardiumCardiomyopathy HypertrophicMyocardial ContractionGATA4 Transcription FactorRatsEndocrinologyHypertrophicphysiologyCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinbetametabolismProto-Oncogene Proteins c-aktTranscription Factors
researchProduct

Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promot…

1997

Interleukin-12 (IL-12) is a proinflammatory cytokine produced by antigen-presenting cells in response to many microbial infections. IL-12 plays an important role in the generation of T helper type-1 cells, which favor cell-mediated immune response. IL-12 is composed of two different subunits, p40 and p35, whose expression can be regulated concomitantly or differentially. Monocytic cells, the major producers of IL-12, can be primed by interferon-gamma (IFN-gamma) to produce optimal amounts of IL-12 in response to LPS stimulation as a consequence of bacterial infection. The priming effect is exerted primarily at the transcriptional level on the p40 promoter in conjunction with the effects of …

LipopolysaccharidesTranscription GeneticSequence HomologyStimulationbiosynthesis/geneticsBiochemistryChromatography Affinitychemistry.chemical_compoundMiceAnimals Base Sequence Cell Line Cell Nucleus; metabolism Chromatography; Affinity DNA-Binding Proteins Humans Interferon-gamma; pharmacology Interleukin-12; biosynthesis/genetics Kinetics Lipopolysaccharides; pharmacology Mice Molecular Sequence Data Nuclear Proteins; isolation /&/ purification/metabolism Promoter Regions; Genetic Protein-Tyrosine Kinases; metabolism Proto-Oncogene Protein c-ets-2 Proto-Oncogene Proteins; isolation /&/ purification/metabolism Repressor Proteins Sequence Homology; Nucleic Acid Trans-Activators; isolation /&/ purification/metabolism Transcription Factors Transcription; Genetic; drug effectsPromoter Regions GeneticChromatographyNuclear ProteinsMethylationProtein-Tyrosine KinasesInterleukin-12DNA-Binding ProteinsTranscriptionMolecular Sequence DataBiologyProinflammatory cytokineCell LineProto-Oncogene Protein c-ets-2Promoter RegionsInterferon-gammaGeneticSequence Homology Nucleic AcidProto-Oncogene ProteinsAnimalsHumansMolecular BiologyTranscription factorCell NucleusMolecular massBase SequenceNucleic Acidisolation /&/ purification/metabolismPromoterCell BiologyMolecular biologyIn vitroRepressor ProteinsKineticschemistryAffinitydrug effectsTrans-ActivatorspharmacologymetabolismDNATranscription Factors
researchProduct

HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma

2015

We have shown that human B-cell non-Hodgkin lymphomas (B-NHLs) express heat shock protein (HSP)H1/105 in function of their aggressiveness. Here, we now clarify its role as a functional B-NHL target by testing the hypothesis that it promotes the stabilization of key lymphoma oncoproteins. HSPH1 silencing in 4 models of aggressive B-NHLs was paralleled by Bcl-6 and c-Myc downregulation. In vitro and in vivo analysis of HSPH1-silenced Namalwa cells showed that this effect was associated with a significant growth delay and the loss of tumorigenicity when 10(4) cells were injected into mice. Interestingly, we found that HSPH1 physically interacts with c-Myc and Bcl-6 in both Namalwa cells and pr…

Lymphoma B-CellXenograft Model Antitumor AssayDNA-Binding ProteinImmunologyDown-RegulationMice SCIDSettore MED/08 - Anatomia PatologicaBiologyBiochemistryHSP110 Heat-Shock ProteinProto-Oncogene Proteins c-mycMiceDownregulation and upregulationimmune system diseasesCell Line Tumorhemic and lymphatic diseasesHeat shock proteinGene Knockdown TechniquesmedicineAnimalsHumansGene silencingHSP110 Heat-Shock ProteinsAnimals; Cell Line Tumor; DNA-Binding Proteins; Down-Regulation; Gene Knockdown Techniques; HSP110 Heat-Shock Proteins; Humans; Lymphoma B-Cell; Mice; Mice SCID; Proto-Oncogene Proteins c-myc; Xenograft Model Antitumor Assays; Biochemistry; Immunology; Medicine (all); Hematology; Cell BiologyAnimalMedicine (all)Cell BiologyHematologymedicine.diseaseXenograft Model Antitumor AssaysIn vitroLymphomaDNA-Binding ProteinsCell cultureGene Knockdown TechniquesGene Knockdown TechniqueImmunologyProto-Oncogene Proteins c-bcl-6Cancer researchB-Cell Non-Hodgkin LymphomaHumanBlood
researchProduct

A follow-up study of a genome-wide association scan identifies a susceptibility locus for venous thrombosis on chromosome 6p24.1.

2010

International audience; To identify genetic susceptibility factors conferring increased risk of venous thrombosis (VT), we conducted a multistage study, following results of a previously published GWAS that failed to detect loci for developing VT. Using a collection of 5862 cases with VT and 7112 healthy controls, we identified the HIVEP1 locus on chromosome 6p24.1 as a susceptibility locus for VT. Indeed, the HIVEP1 rs169713C allele was associated with an increased risk for VT, with an odds ratio of 1.20 (95% confidence interval 1.13-1.27, p = 2.86 x 10(-9)). HIVEP1 codes for a protein that participates in the transcriptional regulation of inflammatory target genes by binding specific DNA …

MESH : Transcription Factors[SDV]Life Sciences [q-bio]Genome-wide association study030204 cardiovascular system & hematologyMESH : Chromosomes Human Pair 60302 clinical medicineGenetics(clinical)Genetics (clinical)GeneticsVenous Thrombosis0303 health sciencesMESH: Polymorphism Single NucleotideMESH : Polymorphism Single NucleotideMESH: Genetic Predisposition to DiseaseMESH: Follow-Up StudiesMESH: Transcription FactorsMESH : Venous ThrombosisMESH: Case-Control StudiesDNA-Binding ProteinsChromosomes Human Pair 6MESH : DNA-Binding ProteinsErratumMESH : Genome-Wide Association StudyMESH : Case-Control StudiesMESH: Chromosomes Human Pair 6Locus (genetics)BiologyPolymorphism Single NucleotideGenetic determinism03 medical and health sciencesReportGenetic predispositionGeneticsHumansGenetic Predisposition to DiseaseAlleleGene030304 developmental biologyMESH: Humans[ SDV ] Life Sciences [q-bio]MESH : Humanslinking inflammation protein atherothrombosis sequence riskCase-control studyChromosomeMESH : Follow-Up StudiesCase-Control StudiesMESH: Genome-Wide Association StudyMESH: Venous ThrombosisMESH : Genetic Predisposition to Disease030217 neurology & neurosurgeryMESH: DNA-Binding ProteinsFollow-Up StudiesGenome-Wide Association StudyTranscription Factors
researchProduct

The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

2009

T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-beta/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor-related orphan receptor gamma t (ROR gamma t). We identify the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) as a key negative regulator of human and mouse Th17 differentiation. PPAR gamma activation in CD4(+) T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentia…

MESH: Nuclear Receptor Subfamily 1 Group F Member 3Helper-InducerReceptors Retinoic AcidT-LymphocytesMESH: Interleukin-17Cellular differentiationRetinoic AcidPeroxisome proliferator-activated receptorNeurodegenerativeInbred C57BLMedical and Health SciencesMiceInterleukin 210302 clinical medicineGroup FRAR-related orphan receptor gammaMESH: Nuclear Receptor Co-Repressor 2Receptors2.1 Biological and endogenous factorsThyroid HormoneImmunology and AllergyMESH: AnimalsAetiologyEncephalomyelitisPromoter Regions Geneticchemistry.chemical_classificationOrphan receptor0303 health sciencesReceptors Thyroid HormoneInterleukin-17Cell DifferentiationT-Lymphocytes Helper-InducerNuclear Receptor Subfamily 1 Group F Member 33. Good healthCell biologyDNA-Binding Proteinsmedicine.anatomical_structureMESH: Repressor Proteins[SDV.IMM]Life Sciences [q-bio]/ImmunologyInterleukin 17MESH: Cell Differentiationmedicine.medical_specialtyEncephalomyelitis Autoimmune ExperimentalMultiple SclerosisNuclear Receptor Subfamily 1Member 31.1 Normal biological development and functioningT cellImmunologyBiologyAutoimmune DiseasePromoter RegionsExperimental03 medical and health sciencesGeneticUnderpinning researchMESH: Mice Inbred C57BLInternal medicineMESH: Promoter Regions GeneticGeneticsmedicineAnimalsHumansNuclear Receptor Co-Repressor 2MESH: Receptors Thyroid HormoneMESH: T-Lymphocytes Helper-InducerMESH: Encephalomyelitis Autoimmune ExperimentalMESH: Mice030304 developmental biologyMESH: Receptors Retinoic AcidMESH: HumansInflammatory and immune systemNeurosciencesBrief Definitive ReportCorrectionMESH: Multiple SclerosisBrain DisordersMice Inbred C57BLPPAR gammaRepressor ProteinsEndocrinologyMESH: PPAR gammaNuclear receptorchemistryMESH: DNA-Binding Proteins030217 neurology & neurosurgeryAutoimmuneJournal of Experimental Medicine
researchProduct

Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis.

2013

MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration. © 2014 Nature America, Inc. All rights reserved.

MaleAged Aged; 80 and over Amyotrophic Lateral Sclerosis; genetics/pathology Computational Biology DNA Mutational Analysis DNA-Binding Proteins; metabolism Family Health Female Genetic Predisposition to Disease; genetics Genotype Humans Male Middle Aged Muscle; Skeletal; metabolism/pathology Mutation; genetics Neurologic Examination Nuclear Matrix-Associated Proteins; genetics/metabolism RNA-Binding Proteins; genetics/metabolism Spinal Cord; metabolism/pathologyDNA Mutational Analysisgenetics/metabolismRNA-binding proteinSettore MED/03 - GENETICA MEDICAmedicine.disease_cause0302 clinical medicineNuclear Matrix-Associated ProteinsGenotype80 and overgeneticsAmyotrophic lateral sclerosisExome sequencingGeneticsAged 80 and overNeurologic Examination0303 health sciencesMutationGeneral NeuroscienceRNA-Binding ProteinsSkeletalMiddle AgedDNA-Binding ProteinsMATR3medicine.anatomical_structureSpinal Cordfamilial amyotrophic lateral sclerosisMuscleSettore MED/26 - NeurologiaFemaleFrontotemporal dementiametabolism/pathologyGenotypeArticle03 medical and health sciencesgenetics; familial amyotrophic lateral sclerosismental disordersmedicineHumansGenetic Predisposition to DiseaseMuscle Skeletal030304 developmental biologyAgedFamily Healthbusiness.industryAmyotrophic Lateral Sclerosisgenetics/pathologyRNAComputational BiologySpinal cordmedicine.diseaseMutationgeneticbusinessNeurosciencemetabolism030217 neurology & neurosurgery
researchProduct